В каталоге 4065 приборов

Для инженеров:
— удобный поиск по параметрам
— постоянно обновляемый каталог
Для компаний КИПиА:
— возможность бесплатно получить клиентов
— удобный инструмент добавления приборов

Методы проведения неразрушающего контроля



 О чем эта статья

Практически каждая сфера производства нуждается в контроле который не разрушают исходный материал. Каждый метод неразрушающего контроля хорош по своему имеет свои тонкости и особенности проведения. В статье изложены примеры самых популярных из них.
Вы также можете посмотреть другие статьи. Например, «Обзор приборов неразрушающего контроля» или «Принцип действия газоанализаторов».

Неразрушающий контроль (НК), говоря языком нормативных документов – это контроль, который не разрушает (именно такое определение дано в ГОСТ 16504-81 «Система государственных испытаний продукции. Испытания и контроль качества продукции. Основные термины и определения»).

Кажущееся неполным и расплывчатым понятие обретает чёткие формы, стоит только разложить его «по полочкам». Так, под словом «контроль» подразумевается «измерение значений рабочих параметров и свойств объекта и их проверка на соответствие допустимым величинам». «Неразрушающий» означает «не требующий демонтажа или остановки работы объекта», «не подразумевающий непосредственного вмешательства в исследуемую среду». У нас на сайте имеется статья — контроль неразрушающий, в которой более подробно рассмотрен этот термин.

Методы, с помощью которых реализуется НК, называются методами неразрушающего контроля (далее МНК).

МНК, в основе которых лежат схожие физические принципы, условно группируются в виды и внутри них классифицируются по трём признакам:

  • по  характеру взаимодействия контролируемого объекта с физическим полем или веществом;
  • по первичному информативному параметру (характеристика проникающего вещества или физического поля, которая регистрируется после её взаимодействия с объектом контроля);
  • по способу, которым получают первичную информацию  (первичная информация – это регистрируемая после взаимодействия с контролируемым объектом совокупность характеристик проникающего вещества или физического поля).

Определение каждого метода контроля – всего их больше ста – можно найти в ГОСТ 18353-79 «Контроль неразрушающий. Классификация видов и методов».

В данной статье МНК будут рассмотрены группами (в основу их объединения положена  принадлежность какому-либо виду или, как уже отмечалось ранее – общность реализуемых в ходе применения физических принципов). 

Магнитные методы неразрушающего контроля

Магнитные МНК основаны на анализе взаимодействия контролируемого объекта с магнитным полем  и применяются, как правило, для обнаружения внутренних и поверхностных дефектов объектов, изготовленных из ферромагнитных материалов.

К основным магнитным методам НК относят магнитопорошковый, феррозондовый, индукционный и магнитографический метод.  Самым распространённым и надёжным среди МНК своего вида является магнитопорошковый – основанный на возникновении неоднородности магнитного поля над местом дефекта.

cхема магнитопорошкового метода неразрушающего контроля
Рис.1 – Магнитопорошковый МНК

Для реализации метода необходимо подготовить поверхность контролируемого объекта, намагнитить её и обработать магнитной суспензией. Металлические частицы, попавшие в неоднородное магнитное поле, возникшее над повреждением, притягиваются друг к другу и образуют цепочные структуры (рис. 1), выявляемые при осмотре деталей.

Оставшиеся не рассмотренными методы магнитного контроля аналогичны. Единственное отличие – вместо магнитного порошка и последующего визуального контроля используются катушка индуктивности (индукционный метод), магнитная лента и датчик, оснащённый магнитной головкой (магнитографический метод), феррозондовый датчик, регистрирующий поля рассеивания (феррозондовый метод).

Электрические методы неразрушающего контроля

Электрические МНК основаны на регистрации и анализе параметров электрического поля, которое взаимодействует с объектом контроля или возникает в нём в результате воздействия извне. Первичными информативными параметрами служат потенциал и ёмкость.

Рассмотрим суть электрических методов на примере электропотенциального метода, основанного на регистрации и анализе падения потенциала.

Если к телу из металла (оно изображено на рис. 2) приложить электрическое напряжение, то в нём возникнет электрическое поле, причём точки с одинаковым потенциалом образуют эквипотенциальные линии. В местах дефектов возникнет падение напряжения, которое можно измерить с помощью электродов и сделать выводы о характере и масштабе повреждений.

cхема электропотенциального метода неразрушающего контроля
Рис.2 – Электропотенциальный МНК

Кроме электропотенциального метода, применяемого для контроля качества проводниковых материалов, используют следующие  электрические методы:

  • емкостной (контроль полупроводников и диэлектриков);
  • термоэлектрический (контроль химического состава материала);
  • электронной эмиссии;
  • электроискровой;
  • электростатического порошка (метод схож с магнитопорошковым).

Вихретоковые методы неразрушающего контроля

Вихретоковые МНК основаны на исследовании взаимодействия электромагнитного поля вихретокового преобразователя с наводимым в объекте контроля  электромагнитным полем вихревых токов, имеющих частоту до 1 млн Гц.

На практике данный метод используют для контроля объектов, которые изготовлены из электропроводящих материалов. С его помощью получают информацию о химическом составе и геометрическом размере изделия, о структуре материала, из которого объект изготовлен и обнаруживают дефекты, залегающие на поверхности и в подповерхностном слое (на глубине 2-3 мм). Типичный прибор используемый этим методом — вихретоковый дефектоскоп.

Принцип контроля заключается в следующем. С помощью катушки индуктивности 1 в объекте контроля 3 возбуждаются вихревые токи 2,  регистрируемые приёмным измерителем, в роли которого выступает та же самая или другая катушка. По интенсивности распределения токов в контролируемом объекте можно судить о размерах изделия, свойствах материала, наличии несплошностей.

cхема вихретокового метода неразрушающего контроля
Рис.3 – Вихретоковый МНК (прохождения)

На рисунке 3 изображен вихретоковый метод прохождения (возбуждающая катушка и приёмник расположены по двум сторонам объекта). К основным методам вихретокового контроля также относят

  • метод рассеянного излучения (регистрация рассеянных волн или частиц, отраженных от дефекта);
  • эхо-метод или метод отраженного излучения (регистрируются отраженные от дефекта поля и волны).

Радиоволновые методы неразрушающего контроля

Радиоволновые МНК основаны на регистрации  и анализе изменения параметров, которыми обладают взаимодействующие с объектом контроля электромагнитные волны радиодиапазона (их длина составляет от 0,01 до 1 м). Данные методы могут применяться для контроля объектов, изготовленных из материалов, не «заглушающих» радиоволны – диэлектриков (керамика), полупроводников, магнитодиэлектриков и тонкостенных объектов из металла.

Не будет ошибкой поставить в соответствие радиоволновым методам методы вихретоковые. Как и в случае вихретоковых МНК, аппаратура для реализации радиоволнового метода состоит из генератора 1 и приёмника волны 3.

Пример взаиморасположения генератора, объекта контроля и приёмника волн приведён на рисунке 4.

cхема радиоволновый метода неразрушающего контроля
Рис.4 – Радиоволновой метод НМК (прохождения)

По характеру взаимодействия объекта с волной  различают радиоволновые методы прохождения, отражения и рассеивания; по первичному информативному параметру – фазовые, геометрические, амплитудно-фазовые и поляризационные МНК.

Тепловые методы неразрушающего контроля

Тепловые МНК в качестве пробной (несущей информацию) энергии используют распространяющуюся в объекте контроля тепловую энергию. Температурное поле напрямую зависит от происходящих в объекте процессах теплопередачи, особенности которых зависят от наличия дефектов (как внутренних, так и наружных).

Основной информативный параметр тепловых МНК – разность температур между бездефектными и дефектными областями объекта. Температура может измеряться контактным и бесконтактным методом.

В зависимости от характера взаимодействия контролируемого объекта и тепловой энергии различают активный (рис.5) и пассивный методы тепловых МНК.

Активный метод заключается в следующем: контролируемый объект 6 с помощью внешнего источника 1 охлаждают или нагревают, а затем с помощью устройства контроля 5 измеряют тепловой поток температуру на его поверхности. Участкам повышенного или пониженного нагрева соответствуют дефекты 4.

cхема активного теплового метода неразрушающего контроля
Рис.5 – Активный метод теплового НК

При использовании пассивного метода (его называют методом собственного излучения) тепловые источники не используют. Вместо этого регистрируют тепловые потоки работающих объектов, ставя в соответствие местам повышенного нагрева неисправности и дефекты.

Тепловые методы широко используются не только при контроле технологических процессов и качества изделий; также их применяют в медицине, астрономии, при мониторинге (лесных пожаров, например).

Оптические методы неразрушающего контроля

Оптические МНК основаны на регистрации и анализе параметров, присущих взаимодействующему с объектом оптическому излучению (к нему относятся электромагнитные волны длиной от 10-5 до 10-3 мкм).

С помощью оптических МНК обнаруживают пустоты, поры, расслоения, трещины, инородные включения, геометрические отклонения и внутренние напряжения в объектах контроля. Информационными параметрами методов являются интегральные и спектральные фотометрические характеристики излучения.

Наружный оптический контроль может применяться относительно объектов из любых материалов. Обнаружение внутренних дефектов (неоднородностей, напряжений) возможно только применительно к прозрачным объектам. Для контроля диаметров и толщины используют оптические  методы, основанные на явлении дифракции, для контроля шероховатости и сферичности – на явлении интерференции.

Оптический контроль может выполняться методами собственного (а), отраженного (б) и  прошедшего (в) излучения.

cхема оптического метода неразрушающего контроля
Рис. 6 – Схемы испытаний оптическими МНК

Приёмное устройство может регистрировать следующие информативные параметры – амплитуду, степень поляризации и фазу волны, время её прохождения через объект, частоту или частотный спектр излучения.

Радиационные методы неразрушающего контроля

Радиационные МНК основаны на регистрации взаимодействующего с объектом проникающего ионизирующего излучения и его последующем анализе. В зависимости от вида ионизирующего излучения, слово «радиационные» в наименовании методов может заменяться на «рентгеновские», «нейтронные» и другие.

Чаще всего для контроля используется гамма- и рентгеновское излучение, позволяющее выявить едва ли не любой дефект (как внутренний, так и поверхностный).

Схема применения радиационного контроля методом прохождения (стоит отметить, что метод отражения практически не используется) приведена на рисунке 7.

Источник 1 излучает поток, проходящий сквозь контролируемый объект 2. Излучение улавливается приёмником 3 и с помощью преобразователя 4 преобразуется в конечный результат.

cхема радиоционного метода неразрушающего контроля
Рис. 7 – Схема применения радиационного контроля (метод прохождения)

В зависимости от того, какой приёмник излучения 3 используется (сцинтилляционный счетчик фотонов и частиц, рентгеновская плёнка или флюоресцирующий экран), различают  радиометрический, радиографический и радиоскопический методы.

Первичным информативным параметром выступает плотность потока излучения, возрастающая в местах дефектов.

Акустические методы неразрушающего контроля

Акустические МНК основаны на регистрации и анализе параметров упругих волн, которые возбуждаются и/или  возникают в объекте контроля. При использовании волн ультразвукового диапазона допустима замена названия группы методов на «ультразвуковые».

Упругие волны, вернее, их параметры, тесно связаны с некоторыми свойствами материалов (анизотропией, плотностью, упругостью и др.), а если принять во внимание тот факт, что акустические свойства твёрдых объектов и воздуха значительно разнятся, становится понятным, почему с помощью акустических МНК возможно выявить наличие малейших дефектов (их ширина может не превышать 10-6 мм), определить качество шлифовки и толщину поверхности.

Сфера использования акустических методов достаточно широка, например ультразвуковые дефектоскопы. Они могут применяться ко всем проводящим акустические волны материалам.

В зависимости от характера взаимодействия с контролируемым объектом, различают пассивные и активные методы контроля. В первом случае регистрируются волны, возникающие в самом объекте (по шумам работающего устройства вполне можно судить о его исправности, неисправности и даже её характере). К активным же относятся методы, основанные на измерении интенсивности пропускаемого или отражаемого объектом акустического сигнала. Результаты применения активного акустического МНК  представлены на рисунке 8.

В левой части рисунка (а)  изображен объект, не имеющий дефектов и соответствующий его проверке график, на котором отображены информативные параметры акустической волны (в данном случае время прохождения через объект). Справа (б) изображен график, соответствующий наличию дефекта.

результаты акустического метода неразрушающего контроля
Рис.8 – Результат применения активного акустического МНК (отражения)

Методы неразрушающего контроля проникающими веществами

МНК проникающими веществами (ПВ) основаны на проникновении в полость дефекта контролируемого объекта специальных веществ. Когда речь идёт о выявлении слабозаметных или незаметных трещин на поверхности, МНК ПВ можно назвать капиллярными, в случае поиска сквозных – течеискания.

При применении МНК ПВ дефекты окрашиваются индикаторной жидкостью (пенетрантом) и выявляются либо визуально, либо с помощью преобразователей.

На рисунке 9 изображён способ применения капиллярного метода неразрушающего контроля (поэтапно)

Схема капиллярного метода неразрушающего контроля
Рис.9 – Поэтапное описание способа применения капиллярного МНК ПВ

На этапе а поверхность контролируемого объекта очищается механическим и/или химическим методом, затем на неё наносится индикаторная жидкость (б). Она заполняет полости дефектов (в). Излишки пенетранта удаляются. На поверхность наносится проявитель, выявляющий признаки дефектов.

Все рассмотренные выше методы контроля не требуют ни разрушения готовых изделий, ни вырезки образцов. Их применение позволяет избежать существенных временных и материальных затрат  и частично автоматизировать операции контроля, повысив при этом надёжность и качество изделий.

Опубликована 27-11-12.

Если вам понравилась статья нажмите на одну из кнопок ниже

 

Корзина

Сейчас корзина пуста.
Найти нужный прибор можно через поиск приборов или в каталоге.


Каталог


Случайные приборы





MLH500BST14A width="160px" height="105px"
Резистивные датчики давления




136PC150G2 width="160px" height="105px"
Резистивные датчики давления




AD7415ARTZ-0REEL7 width="160px" height="105px"
Полупроводниковые термодатчики